

Impact of battery electric vehicles on operation and safety of underground structures and buildings

Peter Sturm, Patrik Fößleitner, Daniel Fruhwirt, Michael Bacher

Graz University of Technology, Austria Institute for Thermodynamics and Sustainable Propulsion Systems

May 21-22, 2024 Zagreb, Croatia

Impact of Battery Electric Vehicles on operation and safety of underground structurs and buildings

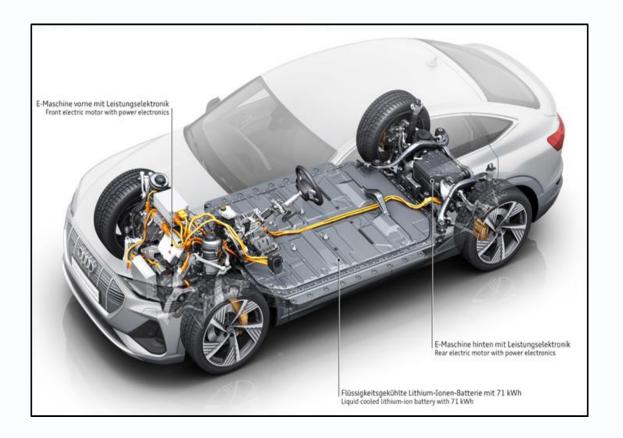
Alternative propulsion technologies, including battery-electric vehicles, are becoming more prevalent

This might have an impact on the nature of safety risks (including fire) in underground facilities like tunnels and garages

New Energy Carriers (NEC)

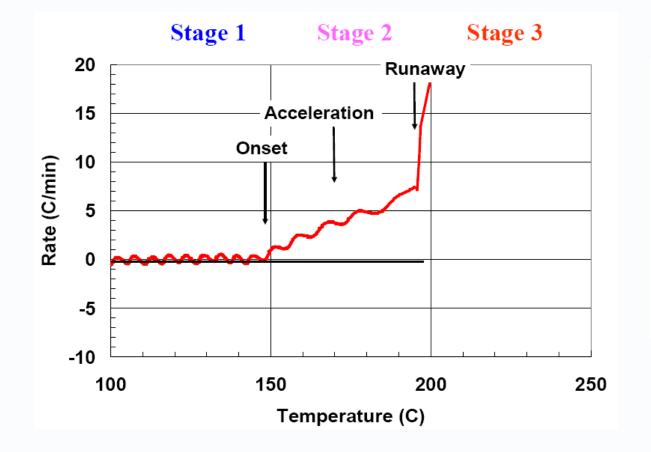
- Battery electric vehicles (BEV)
- Hydrogen powered fuel cell electric vehicles (FCEV)
- Hydrogen or syn-fuel powered internal combustion engine vehicles
- ICEV with compressed or liquified gas (CNG, biogas, LPG, LNG) → bridging technology

Expected fleet penetration of NEC vehicles – example for Germany

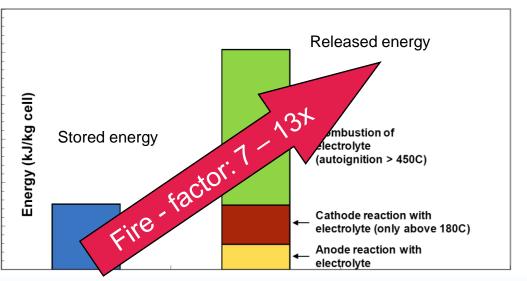

	Cars			Light HGV			Heavy HGV			Bus		
	2020	2030	2040	2020	2030	2040	2020	2030	2040	2020	2030	2040
Conventional	high	high	medium	high	high	high	high	high	high	high	high	high
Hybrid ²	high	medium	medium	low	medium	medium	low	medium	low	medium	medium	high
BEV	medium	high	high	low	medium	medium	low	low	low	medium	high	high
CNG	low	low	low	low	low	low	low	low	low	low	low	medium
LNG	low	low	low	low	low	low	low	low	medium	low	low	medium
LPG	low	low	low	low	low	low	low	low	low	low	low	low
FCEV	low	low	medium	low	low	medium	low	low	medium	low	low	medium
H ₂	low	low	low	low	low	low	low	low	medium	low	low	medium

Schmidt, R., Lehan, A., Fößleitner, P., Kammerer, H.; Influence of alternative energy carriers on tunnel safety – a quantitative consequence analysis, In. Proceedings of the 11th Conference Tunnel Safety and Ventilation, 2022 Graz, Austria

Battery electric vehicles


Vehicle fire:

- Due to a technical defect
 - Starting from the vehicle
 - Starting from the battery
- Due to a collision
 - Fire spread from another vehicle
 - Fire starting from the battery due to a damage



Battery electric vehicles

Heat content and release of a Li-Ion Zelle

Battery electric vehicles

Sturm et. Al.: Fire Safety Journal 134 (2022) 103695

May 21-22, 2024 Zagreb, Croatia

https://www.youtube.com/watch?v=7PDwm_-dI3I&ab_channel=FVTmbH

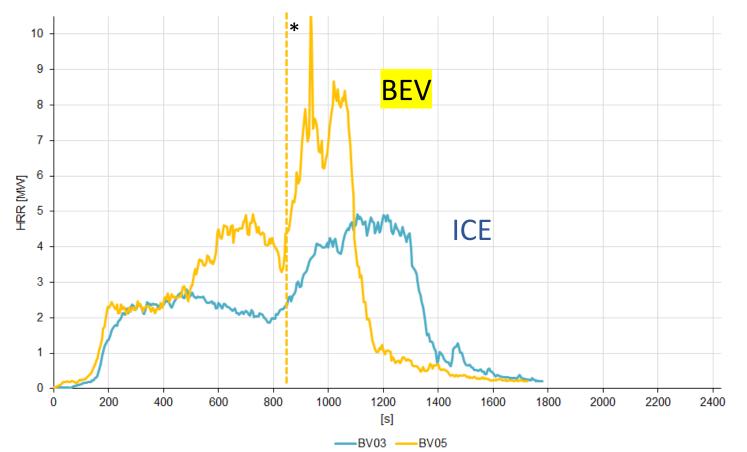
BRAFA

Brandauswirkungen von Fahrzeugen mit alternativen Antriebssystemen

Fire Effects of New Energy Carriers

BV05: Thermal Runaway eines Elektrofahrzeuges

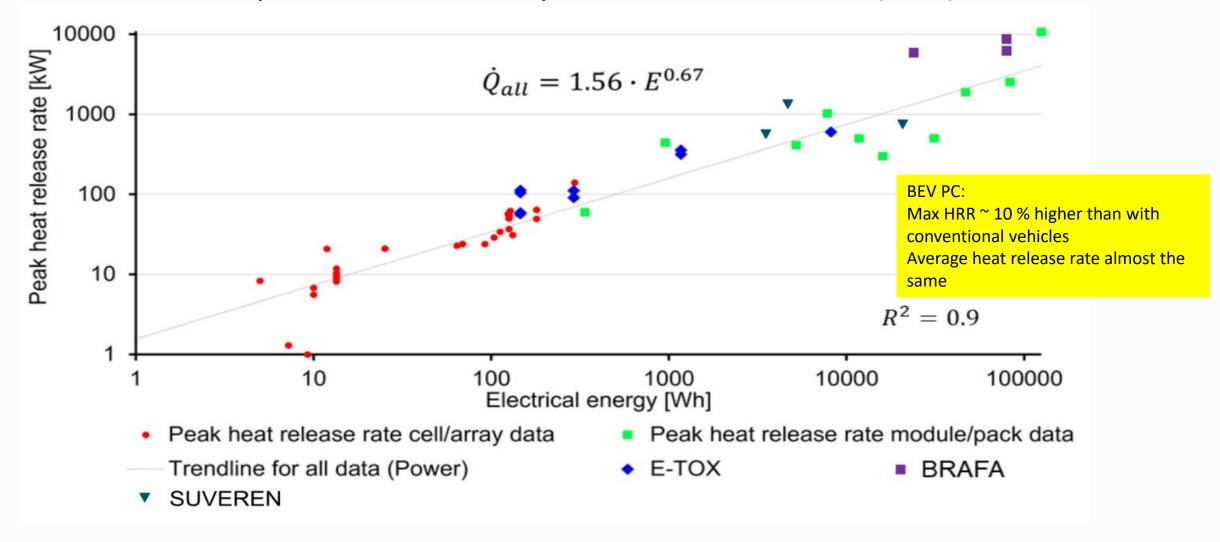
BV05: Thermal Runaway of BEV



Comparison of fire tests of 2 identical vehicles

BEV – 80 kWh NMC Battery 100% SOC (BV 05)

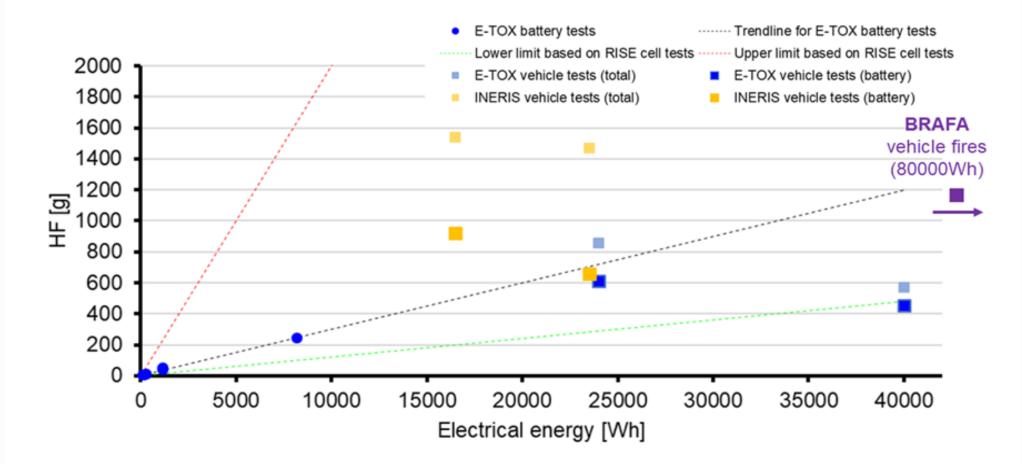
ICE – SUV 50 I Diesel (BV 03)


* Triggered ignition of almost all battery cells within very short time

Source: P. Sturm, P. Fößleitner, D. Fruhwirt, S. Heindl, O. Heger, R. Galler, R. Wenighofer und S. Krausbar, "BRAFA-Brandauswirkungen von Fahrzeugen mit alternativen Antriebssystemen," Graz University of Technology, Graz, 2021.

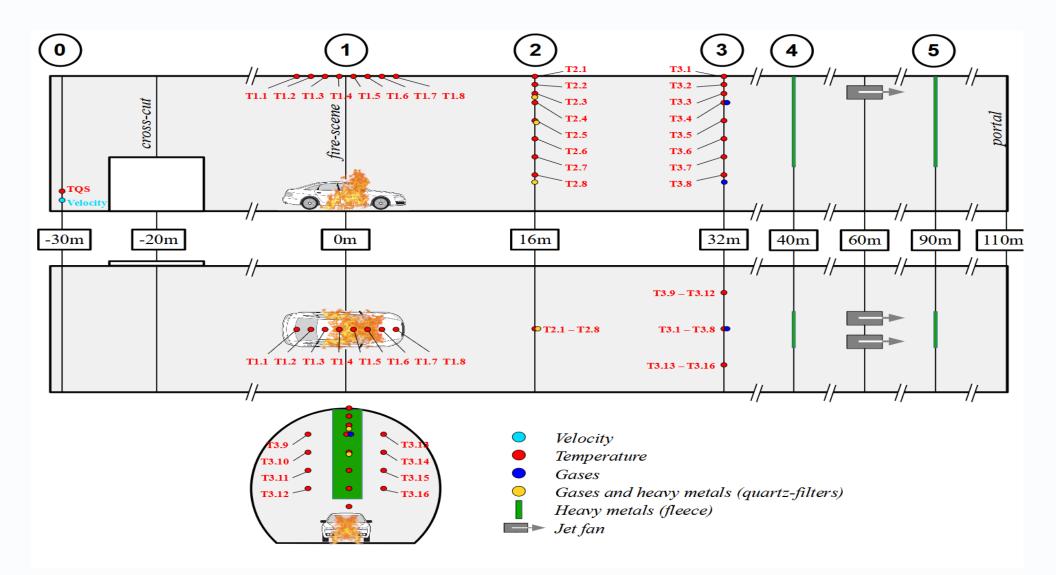
Battery electric vehicles -peak heat release rate (HRR)

Status of charge (SOC) in most cases 100%


Toxic gases – BEV fires

Flue gases and particles:

- Main combustion gases like CO, CO2, HCI are similar to conventional car fires
- HF and some metals like Li, Mn, Co are much higher in BEV fires
- HF has two sources: battery (major part) and coolant (present in both vehicles, but in smaller quantities)
- HF content strongly dependent on battery chemistry and status of charge of battery (lower SOC → higher HF content)



Sturm et al.: Fire Safety Journal 134 (2022) 103695

Battery electric vehicles – test set-up – road tunnel

Battery electric vehicles – toxic gases – road tunnel

Ventilation rate ~ 120 m³/s

Test-Nr.	HCI [mg/m³]			SO ₂ [mg/m³]			H ₃ PO ₄ [mg/m³]			HF [mg/m³]			
Location	16 m downstream fire location												
Height	6.4 m	4.8 m	1.6 m	6.4 m	4.8 m	1.6 m	6.4 m	4.8 m	1.6 m	6.4 m	4.8 m	1.6 m	
BV01 (BEV), 80 kWh	61.8	31.0	4.4	2.8	14.3	1.5	2.5	1.3	0.3	38.4	10.3	13.5	
BV02 (BEV), 24 kWh	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
BV03 (ICE), diesel	61.2	32.1	0.9	0.9	3.0	0.5	0.1	0.1	0.1	8.3	3.2	0.7	
BV04 (ICE), diesel	n/a	6.3	n/a	n/a	3.7	n/a	n/a	n/a	n/a	n/a	*	n/a	
BV05 (BEV), 80 kWh	18.8	35.0	2.6	0.5	9.3	0.7	n/a	n/a	n/a	17.3	20.1	5.3	
IDLH-30		81			286	286 1092 27							
n/a = not analysed * = below detection limit													

Sturm et al.: Fire Safety Journal 134 (2022) 103695

Battery electric vehicles – toxic gases – road tunnel

Ventilation rate ~ 120 m³/s

Element [mg/m³]	BV01 (BEV)			BV02 (BEV)			BV03			BV04			BV05 (BEV)		
Height above road level	6.4m	4.8m	1.6m	6.4m	4,8m	1,6m	6,4m	4,8m	1,6m	6,4m	4,8m	1,6m	6,4 m	4,8m	1,6m
AI	5.988	4.318	0.899	n/a	n/a	n/a	0.157	0.415	0.354	n/a	0.238	n/a	5.381	3.197	0.697
Sb	0.998	0.565	0.376	n/a	n/a	n/a	0.428	0.237	*	n/a	*	n/a	0.356	0.273	*
Pb	*	*	*	n/a	n/a	n/a	*	*	*	n/a	0.119	n/a	0.047	*	*
Cd	0.002	*	*	n/a	n/a	n/a	0.001	*	*	n/a	*	n/a	0.001	*	*
Со	9.139	4.215	0.730	n/a	n/a	n/a	*	*	*	n/a	*	n/a	6.292	*	0.558
Cu	0.746	0.668	0.281	n/a	n/a	n/a	0.233	0.222	*	n/a	*	n/a	0.993	0.780	0.172
Li	5.778	4.524	0.899	n/a	n/a	n/a	0.038	*	*	n/a	*	n/a	4.222	4.679	0.837
Mn	11.555	5.963	0.899	n/a	n/a	n/a	0.045	0.142	*	n/a	*	n/a	8.692	5.458	0.744
Ni	26.262	20.048	3.371	n/a	n/a	n/a	0.151	0.503	0.188	n/a	*	n/a 🤇	29.140	18.325	2.603
Se	0.032	*	*	n/a	n/a	n/a	*	*	*	n/a	*	n/a	*	*	*
TI	*	*	*	n/a	n/a	n/a	*	*	*	n/a	*	n/a	*	*	*

Ni IDLH 11 mg/m³ (Standard conditions); work place regulation (TRK) 2 mg/m³ (15 min)/<u>BGBI.</u>

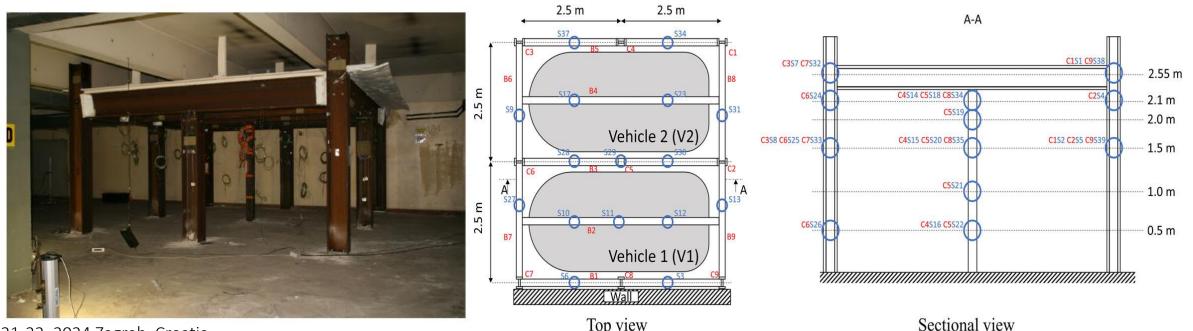
May 21-22, 2024 Zagreb, Croatia

II Nr. 253/2001

Sturm et al.: Fire Safety Journal 134 (2022) 103695

Limitations and implications of BEV fire tests

Full scale vehicle fire tests:

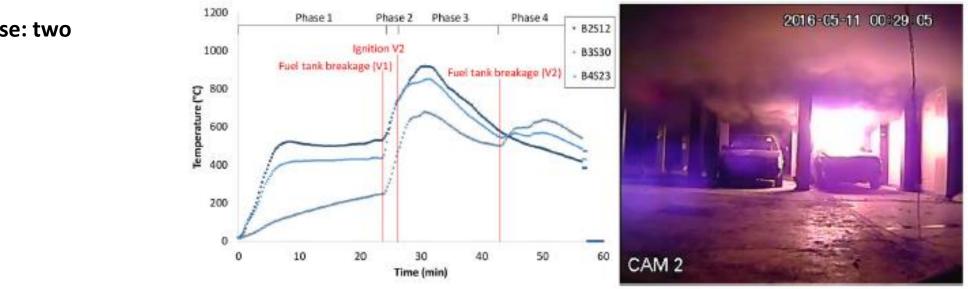

- The number of full scale vehicle fire tests is still small
 - Most of them have been performed in fire houses (labs), few in road tunnels
 - Sufficient air supply was provided by ventilation (ventilation rates between 50 m³/s in fire houses and ~ 120 m³/s in road tunnel)
- No full-scale fire tests of bigger vehicles in enclosed facilities yet published
- For lower ventilation rates (e.g. parking garages) totally different situations are to be expected (higher concentrations, higher peak temperatures on ceiling, etc.)

Fire of NEC vehicles in an underground structure Full scale vehicle fire tests:

- Five fuel types have been tested: ICE (diesel as reference case), BEV (LMP battery), fuel-cell electrical vehicle (H₂-FCEV), CNG, LPG
- Always two cars per test, one on fire, second one (diesel) to monitor fire spread

Ret: Tramoni et al. DOI: 10.1002/tam.2830

May 21-22, 2024 Zagreb, Croatia



Fire of NEC vehicles in an underground structure

Results:

- Maximum temperatures at the steel beams above the cars were not much different (~900°C), only the location
 of the max. temperature different. Fire durations between 20/25 min (one vehicle) and 40/50 min (both vehicles).
- Activation of the safety devices led to a significant increase of released heat, but only for a short duration → no significant impact on structure observed

Reference case: two ICD-diesel

Ref: Tramoni et al. DOI: 10.1002/fam.2830

Fire of NEC vehicles in an underground structure

Results:

- Maximum temperatures at the steel beams above the cars were not much different (~900°C), only the location
 of the max. temperature different. Fire durations between 20/25 min (one vehicle) and 40/50 min (both vehicles).
- Activation of the safety devices of gas fuelled vehicles (H₂, CNG, LPG) led to a significant increase of released heat, but only for a short duration → no significant impact on structure observed

Ref: Tramoni et al. DOI: 10.1002/fam.2830

BEV vehicles in parking houses/garages (Austria)

Authority having jurisdiction is with:

- Federal Ministry in case of commercial use or companies
- Federal States (*Bundesländer*) in case of private use (9 partly different regulations)

Technical requirements only:

- for electrical part of installation
- for charging stations according to EN 61851

No safety concerns according to an official statement from Ministry (BMVIT 2016)

• Restrictions concern obvious issues like e.g. physical blockage of escape routes, traffic, explosion proof areas ...

BEV vehicles in parking houses/garages (Austria)

No safety concerns according to an official statement from Ministry (BMVIT 2016)

• Restrictions concern obvious issues like e.g. physical blockage of escape routes, traffic, explosion proof areas ...

This is questionable as it ignores that

- in the unlikely case of a BEV fire during parking, the probability that a fire happens during charging is higher than due to a malfunction of the parked (and not charged) BEV
- BEV-fires are associated with high HF and CO concentrations as well as a high fire dynamics near the floor

Charging stations in subsurface structures

- should be allocated close to smoke extraction location
- the smoke shall definitely not restrict egress possibilities, i.e. location in reasonable distance to egress ways

US-NFPA 88A (2023) requires sprinkler systems in garages with BEV

Battery electric vehicles – fire fighting

Fire fighting/extinguishing difficult as battery (electrolyte) is an oxygen carrier

Lots of water needed

Direct injection of water into battery case proved to be very effective

Conclusions

BEV vehicles:

- Information for PC size vehicle show a slightly higher heat release rate (at 100% SoC), compared to conventional vehicles.
- HF is identified as an additional critical pollutant related to battery fires.
- But, as long as sufficient ventilation is provided, no harm to tunnel users is to be expected → valid for passenger cars.
- Solid results for bigger size vehicles (busses or HGV) are currently not available.
- During fires in parking garages higher HF and CO concentrations are to be expected due to low ventilation rate
- Full-scale tests with NEC vehicles on fire show no big change in maximum surface temperatures at ceiling
- Concerning charging infrastructure in subsurface and enclosed structures in Austria currently no safety related regulation exists
- Active fighting of BEV-fires is limited to cooling

Thank you very much for your attention

Email: sturm@tugraz.at

https://ivt.tugraz.at/vuu

Further information available:

BRAFA project: <u>https://projekte.ffg.at/projekte/3290205</u> Full report: "BRAFA" - Brandauswirkungen von Fahrzeugen mit alternativen Fahrzeugantrieben, DOI 10.3217/8vj91-gc832 Jornal article: Sturm et al.: Fire Safety Journal 134 (2022), 103695 Videos:

<u>https://www.youtube.com/watch?v=7PDwm_-dI3I&ab_channel=FVTmbH</u> <u>https://www.youtube.com/watch?v=v83C4o2IKZE&ab_channel=FVTmbH</u> https://www.youtube.com/watch?v=uHIVGFsdsqA&ab_channel=FVTmbH

PIARC Impact of new propulsion technologies on road tunnel operations and safety [Bericht] / WG 4 ; Technical Committee 4.4 Tunnels. - Paris, F : PIARC- World Road Organisation, 2023 (in print). - S. 130

<u>Contact:</u> <u>https://ivt.tugraz.at/vuu</u> <u>sturm@tugraz.at</u>, pjsturm@aon.at **TU** Graz

